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1. Introduction

Instantons are responsible for non-perturbative phenomena in 4D gauge theory and have,

by now, found meaningful roles in string theory as well. Relevant work [1] has been done

in different branches. It has been shown that instantons in string theory generate non per-

turbative contributions to the superpotential [2]–[12] and higher F-term contributions [13].

Moreover they have a role in model building, since they can be responsible for moduli sta-

bilization [14] and for other phenomenological aspects like neutrino masses, supersymmetry

breaking and gauge mediation [15]. Other results are found by adding fluxes [16] and more

generally by looking at the string compactification scenarios [17].
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One distinguishes between ordinary D-brane instantons and stringy D-brane instan-

tons. Ordinary D-brane instantons are euclidean D-branes wrapping cycles in the geometry

occupied by other space time filling D-branes. They reproduce ordinary instantons effects

for the gauge theory living on the space time filling D-branes. Stringy D-brane instantons

are euclidean branes wrapped over cycles in the geometry which are not occupied by any

space-time filling brane.

In this note we investigate the relations between stringy instantons and strong dy-

namics effects in type IIB toric quiver gauge theories. Stringy instanton contributions to

the superpotential in quiver gauge theories have been shown to exist for SP(0), SU(1) and

SO(3) nodes. The second and third cases are considered stringy since the low energy dy-

namics associated to those groups is trivial. The results, up to now, show that the stringy

instanton contributions reproduce the non perturbative part of the superpotential of the

gauge theory, i.e. part of the classical constraint on the moduli space. Here we present a

clear-cut argument based on the involutive nature of the Seiberg duality, which explains

the retrieval of the exact instanton contribution as a strong dynamical effect. We shall

speak of equivalence or correspondence between the instantonic and gauge schemes.

The paper is organized as follows. First we give a general overview of the correspon-

dence between stringy instantons and dynamical effects. Then, in section 2 we review the

one-instanton action for a general quiver gauge theory and compute the contribution to the

superpotential. In section 3 we argue that the correspondence is implied by the involutive

property of Seiberg duality. In section 4 we give two examples, the L121 and the dP1 quiver

gauge theories. In section 5 we discuss the correspondence for stringy instantons on SP(0)

and SO(3) gauge groups in orientifolded quiver gauge theories, with clarifying examples.

Finally we conclude in section 6. In appendix A we give some details to complete the

analysis of section 2. In appendix B we compute the bosonic integration over the zero

modes. In appendix C we review some known result in our interpretation.

1.1 Overview

Consider a quiver gauge theory with an SU(1) node and a tree level superpotential Wtree.

A stringy instanton on a SU(1) node gives rise to a superpotential term [5, 8, 10]. The cycle

wrapped by the euclidean D-brane is occupied also by one D-brane and the non trivial

interaction lifts the fermionic zero modes. The resulting superpotential is

W = Wtree + Winst (1.1)

Gauge theories with a SU(1) gauge group are obtained as low energy (magnetic) descrip-

tions of a strongly coupled SU(Nc) gauge theory with Nc + 1 flavours. The low energy

description of this strongly coupled SU(Nc) gauge theory is a limiting case of Seiberg du-

ality. Indeed, it can be described by a magnetic gauge group SU(1), where the elementary

degrees of freedom are mesons and baryons. The baryons are the dual magnetic quarks.

The classical moduli space of such a theory is not modified at quantum level. The classical

constraint is imposed in the dual description by the addition of a non trivial superpotential

for the mesons and the baryons, of the form

Weff ∼ BMB̃ − detM (1.2)
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We shall show that the second term in (1.2) is exactly reproduced by the stringy instanton

contribution in (1.1). Here and in the rest of the paper we set to unity the dimension-full

coefficients.

Relations between non perturbative dynamics and stringy instantons has been already

observed in [4, 5] for cascading gauge theories. The correspondence we ascertain holds

at every step of a cascade when the Seiberg duality is in the limiting case. The non

perturbative contribution to the superpotential is then continuously mapped at every step

until the bottom of the cascade [5].

2. Stringy instanton contribution

For the convenience of the reader we briefly review the basic instanton framework of rele-

vance here. We describe the most general configuration with a SU(1) node in a toric quiver

gauge theory and we place a stringy instanton on that node. We consider only rigid instan-

tons, without adjoint fields charged under the SU(1) gauge group. The instantonic action

for toric quiver gauge theories has been derived in [18]. Toric quiver gauge theories can

be obtained by performing orbifold projection and higgsing of the N = 4 theory. Along

the same lines the instantonic action for toric quivers can be derived from the ADHM

construction for N = 4 theory.

The system consists of N D3 branes and k D(−1) brane in type II B. We refer to [1, 19]

for reviews. The strings with endpoints attached to the D3 branes lead to SU(N) N = 4

SYM. The strings with endpoints attached to the D(−1) branes lead to the neutral sector,

uncharged under the gauge group. It includes bosonic moduli aµ and fermionic zero modes

MαA and λα̇A where α and α̇ denote the positive and negative chirality in four dimension

and A is an SU(4) index (fundamental or anti fundamental) denoting the chirality in the

transverse six dimensions. The equations of motion for the zero modes λα̇A implement

the fermionic ADHM constraint. There is also a triplet of auxiliary bosonic fields Dc

whose equations of motion implement the bosonic ADHM constraint. The charged sector

is associated with strings stretching between D3 branes and the D(−1) branes. It includes

bosonic spinors ωα̇ and ω̄α̇ and fermions µA and µ̄A. These fields are matrices of dimension

N × k.

In order to obtain the toric quiver gauge theory together with the instanton sector the

whole field content has to be projected with the orbifold and then higgsed in a consistent

way [18]. Notice that instanton moduli scale with the same Chan-Paton structure of

ordinary gauge theory fields.

The resulting gauge theory is a toric quiver gauge theory with many gauge groups,

where we can change the ranks of the groups by adding fractional D-branes. The instanton

sector works in a similar way. There are k instantons placed on each node, and we can

add instantonic fractional branes (not to be confused with fractional instantons) to obtain

a different numbers ki of instantons on the various nodes. Here we are interested in one

instanton corrections without multi-instantons effects.

From now on we consider one instanton placed on a SU(1) node in a generic toric

quiver gauge theory (see figure 1).
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Figure 1: Stringy instanton on a SU(1) node in a generic quiver. This is only the sector directly

connected to the node A of an anomaly free quiver.

Sector ADHM Statistic Chan-Paton

Charged µAb Fermion k × Nb

Charged µ̄cA Fermion Nc × k

Charged µAA Fermion k × NA

Charged µ̄AA Fermion NA × k

Charged ωα̇ AA Boson k × NA

Charged ω̄α̇ AA Boson NA × k

Neutral aµ Boson k × k

Neutral Mα Fermion k × k

Neutral λα̇ Fermion k × k

Neutral Dc Boson k × k

Table 1: Spectrum of the ADHM moduli in the charged and in the neutral sector

We denote with A the index associated with that node. The auxiliary instanton group

is U(1). The node A could be connected to the neighbor nodes with fields ΦAb, for outgoing

arrows in the quiver, or with fields ΦcA, for incoming arrows. In general, there could be

more fields with the same gauge groups indexes. To simplify the notation we suppose here

that every neighbor node is connected to the node A with a single field. The general case

is treated in the appendix A. The spectrum is reported in figure 1 and in table 1. The

toric quiver represents the gauge sector. The neutral sector includes the bosonic zero mode

aµ and Dc, and the fermionic zero modes Mα and λα̇ (only the 4 component survive the

orbifold projection in the one instanton case). There is a charged sector connecting the

node A and the instanton, given by ωα̇AA, ω̄α̇AA, µAA, µ̄AA, and a charged sector connecting

the instanton with the neighbor nodes, in a way similar to the field content of the gauge

theory. For each existing outgoing arrow ΦAb there is a fermionic zero mode µ̄Ab, and for

each incoming arrow ΦcA there is µcA.
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The instantonic action reads

Sinst = S1 + S2 + SW (2.1)

where

S1 = i(µ̄AAωα̇AA + ω̄α̇AAµAA)λα̇ − iDc(ω̄α̇AAτ cωα̇AA) (2.2)

S2 =
1

2

∑

b

[

ω̄α̇AAΦAb(ΦAb)
†ωα̇AA + i µ̄Ab(ΦAb)

†µAA

]

(2.3)

+
1

2

∑

c

[

ω̄α̇AA(ΦcA)†ΦcAωα̇AA − i µ̄AA(ΦcA)†µcA

]

(2.4)

SW = −
i

2

∑

b,c

µ̄Ab
∂W

∂(ΦcAΦAb)
µcA, (2.5)

Observe that the SW action involves derivatives of the superpotential with respect to

bilinears of fields contracted on the A index.1

The stringy instanton contribution is obtained by integrating over all the zero modes

Z = C

∫

d{aµ,M, λα̇,D, ωAA, ω̄AA, µAA, µ̄AA, µ̄Ab, µcA} e−Sinst (2.6)

where C is a dimension-full parameter which is discussed in appendix B.1. The integration

over the aµ and the Mα zero mode is interpreted as the superspace integration. Hence the

stringy instanton contribution to the superpotential is given by

Winst ∼

∫

d{λα̇,D, ωAA, ω̄AA, µAA, µ̄AA, µ̄Ab, µcA} e−Sinst (2.7)

The bosonic integration is discussed in appendix B.1. As for the fermionic integration

Winst ∼

∫

dλα̇dµ̄AA dµAA

∏

b,c

(dµ̄Ab)
Nb (dµcA)Nce−Sinst (2.8)

the integral on λα̇ can be performed as in [8] using the S1 part of the instanton action and

it gives the ADHM fermionic constraints. It also saturates the fermionic integration on

µ̄AA and µAA. We end up with the integral

Winst ∼

∫

∏

b,c

(dµ̄Ab)
Nb (dµcA)Nce−SW (2.9)

and this fermionic integration gives

Winst ∼ det

(

∂W

∂(ΦcAΦAb)

)

≡ det
(

M
)

(2.10)

Notice that M is a a square matrix from the anomaly free condition for the node A, which

is
∑

b Nb =
∑

c Nc.

1This is necessary in order to take into account the contribution to this expression for non abelian

superpotential and for superpotentials with terms involving more than 3 fields.
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3. Discussion on the equivalence

The contribution generated by a stringy instanton on an SU(1) gauge node is here obtained

from the strong dynamics of the gauge theory. This equivalence follows from the involutive

property of the (limiting case) of Seiberg duality (i.e. the case with Nf = Nc +1 for unitary

gauge groups).

We consider the previous toric quiver gauge theory with a SU(1) gauge group labeled

by A, with Nf flavours spread on the nodes connected to the SU(1) one. The part of the su-

perpotential involving the fields charged under the gauge group A is a generic holomorphic

function

W = W0(ΦcAΦAb,X
(p)
bc ) (3.1)

where the Φ fields are bifundamentals charged under the SU(1). The X
(p)
bc are fields or

products of fields charged under the gauge groups connected to A in the quiver. In section 2

we showed that a stringy instanton on node A gives a contribution to the superpotential

of the form

Winst ∼ det
∂W0

∂(ΦcAΦAb)
(3.2)

We now perform two consecutive Seiberg dualities on the node A and compare the

resulting theory with the original one. The first step is a formal Seiberg duality for the

gauge group SU(1). This gives a SU(Ñ = Nf − 1) gauge theory with Nf flavours, and

superpotential

Wdual = W0(Mcb,X
(p)
bc ) + McbqbAqAc (3.3)

where Mcb = ΦcAΦAb and qbA and qAc are the dual quarks.

The next step is another duality on the node A. Since Nf = Ñ + 1, the dual gauge

group is SU(1), and the superpotential is

Weff = W0(Mcb,X
(p)
bc ) + McbNbc − NbcbcAbAb + detNbc (3.4)

where Nbc = qbAqAc, the b are baryons, and we have changed the sign of the interaction term

as in [21]. The last two terms implement the classical constraint on the moduli space [20].

For the involution to hold, this theory should coincide with the original one, after

integrating out the massive mesons Mcb, Nbc. The equations of motions of the fields Nbc

give

bcAbAb = Mcb = ΦcAΦAb (3.5)

Hence we identify the baryons b with the original fields Φ. The equation of motion of the

meson Mcb implies that

Nbc ∼
∂W0

∂Mcb
=

∂W0

∂(ΦcAΦAb)
(3.6)

so we recover in (3.4) the original theory (3.1) and also the stringy instanton contribu-

tion (3.2), i.e. the determinant term. This proves the correspondence. We conclude that

the involution of the Seiberg duality in the limiting case provides a gauge theory explana-

tion of the stringy instanton contribution.
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Figure 2: L121 quiver gauge theory.

4. Examples

In this section we exhibit two examples of the correspondence: a non chiral theory, the

L121 quiver gauge theory, and the dP1 chiral theory.

We begin with a theory where there is a node with Nf = Nc + 1, we then consider

strong dynamics for that node and we study the low energy theory, performing a Seiberg

duality in the limiting case, obtaining a non trivial contribution to the superpotential. The

same contribution is obtained analyzing directly the low energy theory and taking into

account the stringy instanton effect on the dualized node, an SU(1) node.

4.1 Non chiral example: L121

The superpotential is

W = −X33Q31Q13 + X33Q32Q23 + Q21Q13Q31Q12 − Q32Q21Q12Q23 (4.1)

We choose the assignment of ranks for the gauge groups such that

N2 + N3 = N1 + 1 (4.2)

We now consider strong dynamics for the node 1. This node has Nf = Nc + 1. The low

energy can be analyzed performing a limiting case of Seiberg duality. The magnetic gauge

group is SU(1), and the magnetic quarks are identified with the baryons of the electric

description. The resulting theory has superpotential

W = −X33M33 + X33Q32Q23 + M23M32 − M22Q23Q32

+M33q31q13 + M22q21q12 − M23q31q12 − M32q21q13 + det

(

M22 −M23

−M32 M33

)

(4.3)

We have added the determinant contribution in order to correctly implement the classical

constraint on the moduli space. Integrating out the massive fields, we obtain the quiver in

– 7 –
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Figure 3: L121 after dualizing node 1.

figure 3 with the following superpotential

W = −q21q13q31q12 + Q23q31q13Q32 + q12M22q21 − Q32M22Q23 + det

(

M22 −q21q13

−q31q12 Q32Q23

)

(4.4)

where there is an extra determinant term with respect to the usual SPP superpotential. The

theory of figure 3 has an SU(1) gauge group. Strong dynamics effects from the theory one

step backward in Seiberg duality have produced a non trivial superpotential contribution,

i.e. the determinant term in (4.4). We show here that the same term is generated by a

stringy instanton in the theory of figure 3.

The instantonic action for the D-instantons in the SPP has been constructed in [18]:

Sinst = i(µ̄11ωα̇11 + ω̄α̇11µ11)λ
α̇ − iDc(ω̄α̇11 (τ c)α̇

β̇
ωβ̇

11)

+
1

2
ω̄α̇11

(

q12q
†
12 + q†21q21 + q13q

†
13 + q†13q31

)

ωα̇11

+
i

2

(

µ̄12q
†
12µ11 + µ̄13q

†
13µ11 − µ̄11q

†
21µ21 − µ̄11q

†
31µ31

)

−
i

2
(µ̄12M22µ21 − µ̄12q21q13µ31 − µ̄13q31q12µ21 + µ̄13Q32Q23µ31) (4.5)

The corresponding quiver is given in figure 4. The solid lines are the chiral superfields.

The dashed lines are the fermionic zero modes connecting the instanton and the other

D-branes in the theory. In order to compute the instanton contribution to the effective

superpotential we have to integrate over the fermionic and bosonic zero mode that couple

among them and with the chiral superfields. The aµ and Mα zero modes are the superspace

coordinates. The integral over the λα̇ and Dc can be done using the first line in (4.5), and

they give the two fermionic and the three fermionic ADHM constraints. The other bosonic

integration has been shown in appendix B.1 to give only a constant. The fermionic ADHM

constraints are

δ (µ̄11ω1̇11 + ω̄1̇11µ11) δ (µ̄11ω2̇11 + ω̄2̇11µ11) = (µ̄11ω1̇11 + ω̄1̇11µ11) (µ̄11ω2̇11 + ω̄2̇11µ11)

= µ̄11 (ω1̇11ω̄2̇11 − ω2̇11ω̄1̇11)µ11 (4.6)

– 8 –
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Figure 4: L121 with instanton on node N1 = 1.

This term saturates also the integrations over the zero modes µ11 and µ̄11.

We are left with the following fermionic integral

Winst ∼

∫

dN2 µ̄12d
N2µ21d

N3 µ̄13d
N3µ31e

−Sinst (4.7)

The relevant part of the action for this integral is the last line in (4.5). It can be rearranged

as

Sinst = · · · −
i

2

(

µ̄12 µ̄13

)

(

M22 −q21q13

−q31q12 Q32Q23

)(

µ21

µ31

)

(4.8)

and the fermionic integration (4.7) gives the contribution

Winst ∼ det

(

M22 −q21q13

−q31q12 Q32Q23

)

(4.9)

This is exactly the same determinant contribution we have obtained in (4.4). The corre-

spondence between the superpotential terms holds. Indeed, adding (4.9) to the tree level

superpotential for the quiver in figure 3, we exactly recover (4.4).

4.2 dP1

Here we study the the chiral dP1 toric quiver gauge theory. The quiver of the theory is in

figure 5.a . The superpotential is

W = ǫαβXα
23X

β
34X42 + ǫαβXα

34X
β
41X13 − ǫαβX12X

α
23X

3
34X

β
41 (4.10)

We choose the ranks to be

N1 = N N2 = N + 3M N3 = N + M N4 = N + 2M

– 9 –
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1= NN ~
2= N−MN

Figure 5: Quivers representing the two dual phases studied for dP1

and consider strong dynamics for the node 2. The dual degrees of freedom are the dual

quarks (bα
32, b21, b24) and the mesons (Mα

13,M
α
43). The resulting quiver is in figure 5.b and

the superpotential, after integrating out the massive matter, is

W = ǫαβbα
32b24X

β
41X13 + ǫαβMα

13b
β
32b21 − ǫαβMα

13X
3
34X

β
41 (4.11)

We used the equations of motion of the massive fields (Mα
43,X

α
34) that fix

M1
43 = X1

41X13 M2
43 = X2

41X13 (4.12)

Choosing N = M + 1 we are in the limiting case of Seiberg duality, where the dualized

magnetic gauge group is SU(1). The classical constraint on the moduli space in this case

is implemented adding to the superpotential (4.11) a determinant term

∆W = detM = det

(

M1
13 −M2

13

−M1
43 M2

43

)

= det

(

M1
13 −M2

13

−X1
41X13 X2

41X13

)

(4.13)

where we used the equation of motions to express it as a function of the fields of the effective

theory.

We now recover the same contribution as a stringy instanton effect in the magnetic

theory, the one in figure 5.b. We place a stringy instanton on the SU(1) node. The

saturation of the zero modes proceed as usual and we are left with the following integral

Winst ∼

∫

(dµ̄24)
N4 (dµ̄21)

N1 (dµ̄1
32)

N2 (dµ̄2
32)

N2 e−Sinst (4.14)

The relevant part of the instantonic action is (2.5) and can be deduced from the superpo-

tential (4.11) to be

Sinst ⊃ ǫαβµ̄24X
β
41X13µ

α
32 + ǫαβ µ̄21M

α
13µ

β
32 =

(

µ̄21 µ̄24

)

(

M1
13 −M2

13

−X1
41X13 X2

41X13

)(

µ2
32

µ1
32

)

(4.15)

Performing the fermionic integrals we then find that

Winst ∼ det

(

M1
13 −M2

13

−X1
41X13 X2

41X13

)

(4.16)

that is Winst = ∆W as claimed. The stringy instanton contribution has been exactly

mapped to the strong dynamics effect.
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Figure 6: Dimer model for the fixed line orientifold of the SPP.

5. Orthogonal and symplectic gauge groups

In this section we generalize the correspondence to orthogonal and symplectic gauge groups.

Quiver gauge theories with these groups can be obtained from unitary gauge groups ap-

plying orientifold projections. Since we consider toric quiver gauge theories, we use the

technology developed in [22] to perform orientifold projections on dimer models [23].

The O-plane projects out some degrees of freedom both in the gauge sector and in the

instanton sector. As a consequence the number of bosonic and fermionic zero modes and

the corresponding ADHM constraints are different [24].

The stringy instanton contribution to the superpotential for symplectic and orthogonal

gauge groups has been studied in [4, 5, 7, 12]. Non trivial contributions, in analogy with

the SU(1) case, arise for stringy instantons of SP(0) and SO(3) gauge groups. The auxiliary

instantonic groups are in these cases O(1) and SP(2), respectively.2

The relation between stringy instantons and strong dynamics effects of the gauge theory

holds also in these cases. Electric magnetic dualities have been studied in [20, 25, 26] for

symplectic and orthogonal gauge groups. For these groups there exist limiting cases of

the duality, as the Nf = Nc + 1 case for SU(Nc). They are respectively the Nf = Nc + 4

for SP(Nc) and Nf = Nc − 1 for SO(Nc) gauge groups. For unitary groups the dual

description is a SU(1) gauge theory. For symplectic and orthogonal gauge groups the dual

descriptions are SP(0) and SO(3), respectively. Indeed they are the configuration where

stringy instanton effects add to the superpotential.

We now point out the agreement between stringy instanton and gauge theory analysis

with some example.

5.1 The orthogonal case

In this subsection we study an orientifold projection of the SPP. We choose an orientifold

from the dimer with a fixed line, where the unit cell of the dimer has a rhombus geometry

(see figure 6). The orientifold charge for the fixed line is chosen positive. In this case all

the unitary groups SU(Ni) become orthogonal SO(Ni) groups. Half of the bifundamentals

survive the projection, and they become

qi,j = (�i,�j) (5.1)

2In our convention SP(2) ≃ SU(2).
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Figure 7: Zero modes (in green) for the S̃P (2) instanton placed on an SO(3) gauge group.

The adjoint field M22 is projected to a symmetric representation. We then choose the

number of fractional branes for each group such that

N1 = N N2 = 3 N3 = 0 (5.2)

This theory is described by the superpotential

W = qT
12q12M22 (5.3)

We add D-brane instantons on the SO(3) node. In the ADHM construction of SO(N)

N = 4 SYM the instantonic auxiliary group [24] is SP(k). In this case the counting of the

zero modes tells that stringy instanton contributes to the superpotential if the auxiliary

group is SP(2). The orientifolded quiver gauge theory with the instanton and the relative

zero modes are shown in the figure 7. The action for the zero modes is

Sinst = iλi
α̇

(

wα̇a
1 σi

abµ
b
1

)

+ iλ′i
α̇

(

w̄α̇a
1 σi

abµ
b
1

)

− iDk
i

(

wα̇a
1 σk

α̇β̇
σi

abw̄
βb
1

)

+
1

2

(

wα̇a
1

(

q12q
†
12

)

w̄α̇a
1 + iµa

2q
†
12µ

b
1ǫab − iµa

2ǫabµ
T
2

b
M22

)

(5.4)

where a and b are SP(2) indexes. Imposing the reality conditions we find six independent

λi
α̇, λ′i

α̇ and four Mα zero modes. The aµ, in the adjoint of SP(2), are symplectic anti-

symmetric matrices. This representation has dimension 1, which implies that there are

four zero modes from aµ. The Dc are nine while there are twelve independent wα̇a
1 , w̄α̇a

1

bosonic spinors. There are six fermionic µa
1 fields connecting the gauge group SO(3) with

the auxiliary instantonic group SP(2). The sector connecting the SP(2) instanton with the

flavor group gives 2Nf fermionic zero modes µa
2. We can now perform the integration over

the fermionic and bosonic zero modes to obtain the instanton contribution. The (aµ,Mα)

zero modes are as usual interpreted as superspace coordinates, giving the superpotential

contribution

Winst = C

∫

d{λ, λ′,D, ω1, ω̄1, µ1, µ2} e−Sinst (5.5)

We discuss in the appendix B.2 the bosonic integration and the dimension-full constant C.

We only quote here the nine ADHM bosonic constraints obtained integrating over the Dk
i

δ(9)
(

wα̇a
c σk

α̇β̇
σi

abw̄
βb
c

)

(5.6)

– 12 –



J
H
E
P
1
1
(
2
0
0
8
)
0
4
1

Now we focus on the fermionic integration. The integration over the λi
α̇, λ′i

α̇ fermionic

zero modes can be done using the first two terms in (5.4) and it gives the six ADHM

fermionic constraints

δ(3)(ωa
c σi

abµ
b
c)δ

(3)(ω̄a
c σi

abµ
b
c) (5.7)

This saturate also the fermionic integration on µa
1 in (5.5). We are left with the fermionic

integral

Winst ∼

∫

[dµa
2] e

−Sinst (5.8)

The integration is done expanding the relevant part of the action in the exponent

Sinst ⊃ µ1
2µ

T
2

2
M22 − µ2

2µ
T
2

1
M22 =

(

µ1
2 µT

2
2
)

(

0 M22

−M22 0

)(

µ1
2

µT
2

2

)

(5.9)

The gaussian integration gives the contribution

Winst ∼ Pf

(

0 M22

−M22 0

)

= det M22 (5.10)

This last equality holds since M is a symmetric matrix. In appendix B.2 we show, using

dimensional analysis, that the bosonic integral is adimensional. This means that it is

independent from the physical fields and it gives only a constant contribution. We conclude

that (5.10) is the SP(2) stringy instanton contribution on the SO(3) node.

We now argue that the same relationship between stringy instanton and strong dy-

namics that holds in the case of unitary groups is valid also in this situation.

Once again we exploit the involutive property of Seiberg duality. We thus perform two

consecutive Seiberg duality, recovering in the end the starting theory. The first one is a

formal Seiberg duality on the SO(3) node with N flavours, and we obtain the theory one

step backwards. This gives an SO(Ñ = Nf −Nc + 4 = N + 1) gauge group with N flavor.

The superpotential of this theory is

W = QT
12Q12N22 + N22M22 (5.11)

Integrating out the massive field this superpotential vanishes. We perform then another

Seiberg duality. Since for this theory Nf = Nc − 1 we are in the limiting case of Seiberg

duality for orthogonal gauge groups. The dual gauge group is SO(Nf − Nc + 4 = 3) and

the superpotential

W = qT
12q12M22 + det M22 (5.12)

where we have added the determinant to take into account the classical constraint on the

moduli space.

We have thus recovered in (5.12) the starting superpotential (5.3) and the stringy

instanton contribution (5.10). So also for orthogonal gauge group we have mapped the

stringy instanton contribution in strong dynamics effects.

– 13 –
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Figure 8: Dimer for the orientifold of the double conifold. The dashed blue lines represents the

orientifold fixed lines.

5.2 The symplectic case

We first consider symplectic SQCD. We take SP(0) as the gauge group, with SP(N)

flavours. There is a meson M in the antisymmetric representation and there is no su-

perpotential.

It has been shown that a stringy instanton on the SP(0) gauge group gives a non trivial

contribution to the superpotential. In the ADHM construction the instantonic auxiliary

group for a symplectic gauge group is O(k). The non perturbative contribution is obtained

if the instantonic number is k = 1, with auxiliary group O(1). There are no fermionic

and bosonic ADHM constraint, no w, D and λ fields. There are two Mα and four aµ

which are interpreted as the superspace coordinates. The instantonic action is given by the

interaction of the meson with the fermionic zero modes µ connecting the O(1) instanton

and the flavor group

S = −
i

2
µMµT (5.13)

The superpotential contribution is obtained integrating over the µ fermionic zero modes

Winst ∼

∫

d[µ]e−S = PfM (5.14)

Also for symplectic gauge groups we relate this contribution to strong dynamics effects.

Through a formal electric magnetic duality on the SP(0) node we obtain the dual theory.

It is an SP(Ñ = Nf − Nc − 4 = N − 4) gauge group with N flavours and no mesons. We

then perform another duality obtaining a SP(Nf −Nc − 4 = N − Ñ − 4 = 0) gauge group,

where the only degree of freedom is the meson M . This is the starting theory. However,

since we are in the limiting case of Seiberg duality for symplectic gauge group, we also

obtain the following contribution to the superpotential

Weff = PfM (5.15)

which implement the classical constraints on the moduli space. The equivalence be-

tween (5.14) and (5.15) shows that, also for symplectic gauge groups, the strong dynamic

effect coincides with the stringy instanton contribution to the superpotential.

5.2.1 Example: orientifold of the double conifold

In this subsection we give an example of the correspondence using an orientifold of the

double conifolds. The dimer model is represented in figure 8. The unit cell is delimited
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Figure 9: Stringy instanton on the orientifolded double conifold. The green lines represent the

fermionic zero modes in the instantonic action.

by the red lines. The projection is done by the two independent dashed blue fixed lines.

We choose their orientifold charge to be negative. This implies that all the groups are

symplectic. The bifundamentals fields are in the (�i,�j) representation of the SP(2Ni)×

SP(2Nj) gauge groups. The fields in the adjoint representation of the SU(Ni) gauge groups

are now in the antisymmetric representation of the SP(2Ni) groups. The rank of the first

group SP(2N1) is chosen to be zero. The choice of the others ranks is free. Here, for

simplicity, we choose the same rank N for all of them. The superpotential for this theory

is

W = M22 · Q23 · Q23 − Q23 · Q23 · Q34 · Q34 + M44 · Q34 · Q34 (5.16)

where the · represent the symplectic products.

We add a stringy instanton on the SP(0) node and we study its contribution to the

superpotential. The zero modes are shown in figure 9. The instantonic action is

Sinst = −
i

2
µ12M22µ

T
12 −

i

2
µ14M44µ

T
14 (5.17)

The integration over the fermionic zero modes µ12 and µ14 gives a non perturbative con-

tribution

Winst ∼

∫

d[µ12]d[µ14]e
−Sinst = PfM22PfM44 (5.18)

to the superpotential (5.16).

The same result can be found from the gauge theory analysis. The theory one step

backwards in Seiberg duality is obtained by a formal duality on the SP(0) node. We get a

SP(2N − 4) gauge group with 2N flavours. The superpotential of this dual theory is

W = Q12 · Q12 · Q23 · Q23 − Q23 · Q23 · Q34 · Q34

+Q34 · Q34 · Q41 · Q41 − Q41 · Q41 · Q12 · Q12 (5.19)

We perform then another Seiberg duality to go back to the starting theory. We obtain a

SP(0) gauge group and superpotential

W = −M24·M42+M22·Q23·Q23−Q23·Q23·Q34·Q34+M44·Q34·Q34+Pf

(

M22 M24

M42 M44

)

(5.20)

– 15 –



J
H
E
P
1
1
(
2
0
0
8
)
0
4
1

The mesons are defined as Mij = qiλi
Jλ1λ2

qj,λ2
. Since we are in the case Nf = Nc + 4 we

have added the non perturbative term to implement the classical constraint on the moduli

space. Note that the antisymmetry of Jλ1,λ2
implies that M42 = −MT

24. Integrating out the

massive fields (M24,M42) we recover the starting theory (5.16) plus the non perturbative

contribution

Wnp = PfM22PfM44 (5.21)

This is exactly the same contribution obtained from the stringy instanton computa-

tion (5.18).

6. Conclusions

In this paper we have considered stringy instantons in toric quiver gauge theories deriving

from D3/D(−1) systems. We have provided an interpretation for the stringy instanton

contribution as a strong dynamics effect by analyzing the theory one step backwards in

Seiberg duality, for the node where the instanton is located. Our result is valid for stringy

instantons on SU(1), SP(0) and SO(3) nodes.3

There are interesting aspects we have not discussed here. The results we presented

could be extended to non toric quiver gauge theories. Our analysis might also be useful in

understanding the role played by stringy instantons in dynamical supersymmetry breaking

in quiver gauge theories. Another issue would be the study of non-rigid instantons and

multi-instantons effects in toric quiver gauge theories, and their relation to strong dynamics

of the gauge theory. Finally4 a similar correspondence should exist for instantonic higher

F -term contributions in relation with strong dynamics leading to magnetic SU(0) gauge

group, i.e. the Nf = Nc case.
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A. General result for U(1) instanton

In this appendix we compute the general contribution to the superpotential for a rigid

U(1) instanton placed on a SU(1) node (denoted with A) in a toric quiver gauge theory,

generalizing the result of section 2. The more general configuration includes the possibility

of having more than one field with the same gauge group indexes, connected to the node

A. We label these fields with an extra index α for outgoing arrow and β for incoming

3See [29] for related discussion in the context of matrix models.
4We thank A. M. Uranga for suggesting this to us.
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arrow. Hence the fields connecting the node A to the other gauge nodes are referred as

Φα
Ab or Φβ

cA. These extra indexes have to be inserted, and summed over, in all the formula

of section 2, e.g. for the instantonic action. An important remark is that now the anomaly

free condition for the node A is
∑

b,α

Nb =
∑

c,β

Nc (A.1)

The procedure for getting the superpotential contribution is as in section 2. The integration

of the bosonic zero modes and of the fermionic zero mode λα̇ and µAA, µ̄AA, give the same

result. We have to perform the following integral

Winst ∼

∫

∏

b,α,c,β

(dµ̄α
Ab)

Nb (dµβ
cA)Nce−SW (A.2)

where now

SW = −
i

2

∑

b,α,c,β

µ̄α
Ab

∂W

∂(Φβ
cAΦα

Ab)
µβ

cA (A.3)

In order to compute this integral we can arrange the fermionic variable in vectors

µ̄AB = (µα
Ab) µCA = (µβ

cA)T (A.4)

of dimension

B = 1, . . . ,
∑

b,α

Nb C = 1, . . . ,
∑

c,β

Nc (A.5)

and rewrite the instantonic action as

SW = −
i

2
µ̄ABMBCµCA (A.6)

where M is a matrix of dimension
∑

b,α Nb ×
∑

c,β Nc, built taking derivatives of the

superpotential

M =

(

∂W

∂(Φβ
cAΦα

Ab)

)

(A.7)

M is a square matrix because of the anomaly free condition (A.1). The ordering of the

fields in building M is irrelevant for the final contribution to the superpotential, which is

a determinant. Indeed we can perform the fermionic integration and obtain the stringy

instanton contribution

Winst ∼ det

(

∂W

∂(Φα
cAΦβ

Ab)

)

(A.8)

B. Bosonic integration

In this appendix we show, via dimensional arguments similar to [8], that the integration

over the bosonic zero modes of the stringy instantons change the results of the fermionic

integration only by a constant factor. We analyze the general bosonic integration for the

U(1) and the SP(2) instanton. The O(1) case is trivial since there are no bosonic zero

modes to integrate over.
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B.1 The U(1)-instanton

In section 2 we have considered an SU(1) node A in the quiver and label with index b all

the outgoing arrows, and with c all the incoming arrows. We have then the collection of

fields ΦAb and ΦcA.

We have seen that the contribution to the superpotential after fermionic integration,

due to an instanton on node A is given by the determinant of the squared matrix M. The

determinant of this matrix has mass dimension

[detM] = M
(
P

c Nc)
s = M

(
P

b Nb)
s (B.1)

We can now compute the dimension of the measure factor for the general instanton com-

putation of section 2

Z = C

∫

d{aµ,M, λ,D, ωAA, ω̄AA, µAA, µ̄AA, µ̄Ab, µcA} e−Sinst (B.2)

The dimension-full coefficient C is for the moment unknown. Using the usual standard

dimensions we arrive at

[d{aµ,M, λ,D, ωAA, ω̄AA, µAA, µ̄AA, µ̄Ab, µcA}] = M
−na+ 1

2
nM− 3

2
nλ+2nD−nω,ω̄+ 1

2
nµ,µ̄

s (B.3)

Since

na = 4 nM = nλ = 2 nD = 3 nω,ω̄ = 4NA nµµ̄ = 2NA +
∑

b

Nb +
∑

c

Nc (B.4)

we obtain

[d{aµ,M, λ,D, ωAA, ω̄AA, µAA, µ̄AA, µ̄Ab, µcA}] = M
−(3NA− 1

2
(
P

b Nb+
P

c Nc))
s = M−βA

s

(B.5)

where we have recognized the 1 loop beta function of the node A.

Now, since Z in (B.2) should be adimensional we obtain that

C = ΛβA (B.6)

Hence we have

Z = ΛβA

∫

d{aµ,M, λ,D, ωAA, ω̄AA, µAA, µ̄AA, µ̄Ab, µcA} e−Sinst (B.7)

Now, we expect that

Z =

∫

d4xd2θ Winst (B.8)

and then

Winst = ΛβA

∫

d{λ,D, ωAA, ω̄AA, µAA, µ̄AA, µ̄Ab, µcA} e−Sinst (B.9)

Now, we have seen that the fermionic (plus the D) integrations give, when NA = 1, the

following

Winst = ΛβAIboson detM (B.10)
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where M is the meson built before and we still have to perform the bosonic integration

Iboson, and show that it gives a numerical coefficient. Indeed the dimensional analysis gives

[W ] = [ΛβA ] + [Iboson] + [detM]βA + [Iboson] +

(

∑

b

Nb

)

(B.11)

= 3 −
1

2

(

∑

b

Nb +
∑

c

Nc

)

+ [Iboson] +

(

∑

b

Nb

)

= 3 + [Iboson]

where we have used the anomaly free condition. In order to have a superpotential of

dimension 3 we have to set [Iboson] = 0, i.e. a number.

B.2 The SP(2)-instanton

We can easily repeat the analysis done in the previous section for the SP(2) instanton

on the SO(3) gauge node. We denote with A the SO(3) gauge group where we place the

instantons and label with index b all the outgoing arrows, and with c all the incoming

arrows. In general the contribution to the superpotential after fermionic integration, due

to SP(2) instantons on node A is given by a pfaffian of dimension

[PfM] = M
(
P

c Nc)
s = M

(
P

b Nb)
s (B.12)

We can now compute the dimension of the instanton measure factor

Z = C

∫

d{aµ,M, λ,D, ωAA, µAA, µ̄Ab, µcA} e−Sinst (B.13)

The dimension-full coefficient C is up to now unknown. Using the usual dimensions we

arrive at

[d{aµ,M, λ,D, ωAA, µAA, µ̄Ab, µcA}] = M
−na+ 1

2
nM− 3

2
nλ+2nD−nω,ω̄+ 1

2
nµ,µ̄

s (B.14)

Now we have to remind that the auxiliary group for the instanton is SP(2) and this gives

different numbers of components respect to the U(1) case, that is

na = 4 nM = 2, nλ = 6 nD = 9 nω = 4NA nµµ̄ = 2NA +
∑

b

Nb +
∑

c

Nc (B.15)

we obtain

[d{aµ,M, λ,D, ωAA, µAA, µ̄Ab, µcA}] = M
−(3NA−6− 1

2
(
P

b Nb+
P

c Nc))
s = M−βA

s (B.16)

where we have recognized the 1 loop beta function of the SO(NA) node.

Now, since Z in (B.13) should be adimensional we obtain that

C = ΛβA (B.17)

Hence we have

Z = ΛβA

∫

d{aµ,M, λ,D, ωAA, µAA, µ̄Ab, µcA} e−Sinst (B.18)
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Now, we expect that

Z =

∫

d4xd2θ Winst (B.19)

and then

Winst = ΛβA

∫

d{λ,D, ωAA, µAA, µ̄Ab, µcA} e−Sinst (B.20)

Now, we have seen that the fermionic (plus the D) integrations give, when NA = 3, the

following

Winst = ΛβAIbosonPfM (B.21)

where Iboson is the bosonic integration. The dimensional analysis told us that

[W ] = [ΛβA ] + [Iboson] + [PfM]βA + [Iboson] +

(

∑

b

Nb

)

(B.22)

= 3NA − 6 −
1

2

(

∑

b

Nb +
∑

c

Nc

)

+ [Iboson] +

(

∑

b

Nb

)

= 3NA − 6 + [Iboson]

Since we have NA = 3, in order to have a superpotential of dimension 3 we have to set

[Iboson] = 0, i.e. a number.

C. Relation with known models

In this appendix we show that there is no disagreement between the stringy instanton

contributions of [8, 7] and our results.

C.1 The SU(1) theory

The theory studied in [8] is the C
3/(Z2 × Z2) orbifold. This is a quiver gauge theory with

four gauge groups, described by the superpotential

W = Φ12Φ23Φ31 − Φ13Φ32Φ21 + Φ13Φ34Φ41 − Φ14Φ43Φ31

+Φ23Φ34Φ42 − Φ24Φ43Φ32 + Φ12Φ24Φ41 − Φ14Φ42Φ21 (C.1)

The ranks of the groups are (N1, N2, N3, N4) = (N1, N2, 1, 0). A stringy instanton placed

on node N3 contributes to the superpotential only if N1 = N2. In this case it has be shown

that its contribution is

Winst = detΦ12 detΦ21 (C.2)

We now find the same result from gauge theory analysis. Dualizing the node 3 we find

a theory with gauge group SU(Ñ3 = N1 + N2 − 1) and superpotential

W = M11Q13Q31 − M22Q23Q32 (C.3)

We then dualize again node 3. Since it is in the case Nf = Nc + 1, the dual theory has

SU(N3) = SU(1) gauge group, and the superpotential is

W = M11Φ11−M22Φ22+Φ11Φ13Φ31−Φ22Φ23Φ32+Φ12Φ23Φ31−Φ13Φ32Φ21+det

(

Φ11 Φ12

Φ21 Φ22

)

(C.4)
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Figure 10: Unit cell and fixed point for C3/(Z2 × Z2)

After the integration of the massive field M11,M22,Φ11,Φ22, the superpotential is

W = Φ12Φ23Φ31 − Φ13Φ32Φ21 + det

(

0 Φ12

Φ21 0

)

(C.5)

The first two terms are the same than (C.1). The det piece coincide with (C.2), as expected.

Note that it vanishes if N1 6= N2 as in the stringy instanton computation.

C.2 The SP(0) theory

It is also possible to make an orientifold projection of the C
3/(Z2×Z2) orbifold. A possible

orientifold is described by the dimer in figure 10.

It is a fixed point projection. Since N [W ] = 8, the total orientifold charge is positive.

This condition can be imposed choosing all the single charge to be negative. All the groups

are identified with themselves and they are all symplectic. All the fields are bifundamental

in the (�i,�j) of the SP(Ni) × SP(Nj) gauge groups. There is no superpotential for

these fields. This is the same projection described in [7]. In that paper the ranks were

(N1, N2, N3, N4) = (N,N, 0, 0), and the stringy instanton was located on the third node.

The stringy instanton contribution to the superpotential is given by

Winst = detΦ12 (C.6)

The same result can be found by the gauge theory analysis. The dual theory has rank

2N − 4 for the third node, and superpotential

W = M11 · Q13 · Q13 − M22 · Q23 · Q32 (C.7)

We then perform again electric magnetic duality on the third node. The gauge group

becomes SP(N1 + N2 − N3 − 4) = SP(0), and the superpotential is

W = M11 · Φ11 − M22 · Φ22 + Pf

(

Φ11 Φ12

Φ21 Φ22

)

(C.8)
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where all the blocks of the meson are in an antisymmetric representation of the flavor,

and Φ21 = −ΦT
12. Integrating out the massive fields the only non vanishing term of the

superpotential is the non perturbative one

W = Pf

(

0 Φ12

−ΦT
12 0

)

= det Φ12 (C.9)

It is exactly the same than the stringy instanton contribution (C.6).
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